Linear Fractional Recurrences: Periodicities and Integrability

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Se p 20 05 Periodicities in Linear Fractional Recurrences : Degree growth of birational surface maps

A natural question is: for what values of α and β can (0.1) generate a periodic recurrence? In other words, when does (0.1) generate a periodic sequence (xn) for all choices of x1, . . . , xp? This is equivalent to asking when there is an N such that f α,β is the identity map. Periodicities in recurrences of the form (0.1) have been studied in [L, KG, KoL, GL, CL]. The question of determining t...

متن کامل

Integrability and non-integrability of periodic non-autonomous Lyness recurrences∗

This paper studies non-autonomous Lyness type recurrences of the form xn+2 = (an +xn+1)/xn, where {an} is a k-periodic sequence of positive numbers with primitive period k. We show that for the cases k ∈ {1, 2, 3, 6} the behavior of the sequence {xn} is simple (integrable) while for the remaining cases satisfying this behavior can be much more complicated (chaotic). We also show that the cases ...

متن کامل

Diophantine Equations Related with Linear Binary Recurrences

In this paper we find all solutions of four kinds of the Diophantine equations begin{equation*} ~x^{2}pm V_{t}xy-y^{2}pm x=0text{ and}~x^{2}pm V_{t}xy-y^{2}pm y=0, end{equation*}% for an odd number $t$, and, begin{equation*} ~x^{2}pm V_{t}xy+y^{2}-x=0text{ and}text{ }x^{2}pm V_{t}xy+y^{2}-y=0, end{equation*}% for an even number $t$, where $V_{n}$ is a generalized Lucas number. This pape...

متن کامل

Linear Recurrences and Chebyshev Polynomials

with given a, b, t0, t1 and n ≥ 0. This sequence was introduced by Horadam [3] in 1965, and it generalizes many sequences (see [1, 4]). Examples of such sequences are Fibonacci polynomials sequence (Fn(x))n≥0, Lucas polynomials sequence (Ln(x))n≥0, and Pell polynomials sequence (Pn(x))n≥0, when one has a = x, b = t1 = 1, t0 = 0; a = t1 = x, b = 1, t0 = 2; and a = 2x, b = t1 = 1, t0 = 0; respect...

متن کامل

Circulants , Linear Recurrences and Codes

We shall give some intriguing applications of the theory of circulants—the circulant matrices—and that of linear recurrence sequences (LRS). The applications of the former in §2 ranges from a simple derivation of the Blahut theorem to the energy levels of hydrogen atoms in circular hydrocarbons, where the Blahut theorem is to the effect that the Hamming weight of a code is equal to the rank of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales de la faculté des sciences de Toulouse Mathématiques

سال: 2011

ISSN: 0240-2963

DOI: 10.5802/afst.1304